Abstract
Bronsted acid ionic liquids (BAILs) based on the 4-(3′-butyl-1′-imidazolio)-1-butanesulfonic acid cation were found to be very efficient polyesterification solvents and catalysts. Only 5–30 min at 90–110 °C was required to obtain high molar mass poly(12-hydroxydodecanoic acid) (Mw up to 40000 g mol−1). The polyesterification was faster in BAILs with the bis(trifluoromethylsulfonyl)imidide anion (Tf2N), but small amounts of ethers and double bonds arising from side reactions were detected in the final polymer. On the other hand, no side reactions took place in the BAIL with the hydrogen sulfate anion, except for the formation of a sulfonate ester intermediate that can further react with carboxylic acid groups to yield the expected ester. This intermediate, not observed in Tf2N-based BAILs, might be involved in the protection of hydroxy end groups from etherification side reactions in HSO4−-based BAILs. To explain the different behaviors of these BAILs, and since the acidity of H2SO4 is much higher than that of Tf2NH, it is suggested that the structure of these BAILs could be different: alkylsulfonic acid-substituted imidazolium for the former, while the latter could be just a mixture of imidazolium–sulfonate zwitterion and Tf2NH. The influence of reaction temperature, water elimination method and BAIL concentration on polyesterification are also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have