Abstract
The incorporation of nanostructured materials, such as LTA-type zeolite on the silicon wafers, opens a very interesting door to the use of these materials within silicon based microfabrication technologies. This work studies the deposition and intergrowth of defect-free LTA-type zeolite layer onto 3-inch Silicon wafers with a layer of SiO2 subjected to pretreatment. The main disadvantage associated with zeolite layer synthesis are crack the formation of cracks and difficulty of obtaining a uniform layer. By modifying the supports with boehmite, a substantial improvement was observed in terms of layer continuity and crystal intergrowth in comparrison to coatings prepared on cationic polymer, poly (diallyldimethylammonium chloride). An LTA- type zeolite layer was synthesized in a range of 350 to 1300 nm via hydrothermal ex-situ method at 363 K for 12 h. Tetramethylammonium hydroxide (TMAOH) was used as a template, and aluminum isopropoxide and colloidal silica were used as Al and Si sources, respectively.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have