Abstract
Alkali-activated fly ash slag (AAFS) has emerged as a novel and environmentally sustainable construction material, garnering substantial attention due to its commendable mechanical attributes and minimal ecological footprint. This investigation delves into the influence of slag incorporation on the strength, pore structure, and transport characteristics of AAFS, encompassing various levels of fly ash replacement with slag. To assess the mechanical properties of AAFS concrete, unconfined compression and ultrasonic pulse velocity tests were conducted. Meanwhile, microstructural and mineralogical alterations were scrutinized through porosity, N2-adsorption/desorption, and SEM/EDX assessments. In addition, transport properties were gauged using electrical surface resistivity, water permeability, and water vapor permeability tests. According to the results, a remarkable refinement in the pore volume was found by increasing the slag content. The volume of the gel pores and surface area increased significantly associated with the increase in tortuosity. Accordingly, Ca inclusion in the cross-linked sodium aluminosilicate hydrate gel remarkably reduced the transport properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.