Abstract

In recent times, bioconvection phenomenon through the use of nanomaterials has encountered significant manufacturing and technical applications. Bioconvection has several applications in bio-micro-system, due to the enhancement in mass transformation and mixing, which are crucial problems in different micro-systems. The aim of current article is to scrutinize the bioconvection phenomenon in 3D Maxwell nanofluid flow with useful characteristics of mixed convection, activation energy, motile microorganisms and solutal boundary conditions. The flow problem focused on the related laws, outcomes in a series of PDEs which have also been delayed in ODE's structure. The numerical method based on a shooting technique is applied to implement a bvp4c solver using the computational software MATLAB. Shooting tactic is utilized to construct the numerical arrangement of subsequent problem. The mathematical division for the local Nusselt number, the motile microorganism's number, and the local Sherwood number is provided when applying different characteristics to the concerned parameters. The hypothetical simulations mentioned may be more successful in enhancing thermal extrusion mechanisms and solar energy structures. The numerical results regarding flow, thermal field, solutal field and concentration of microorganisms are revealed for growing values of interesting parameters. Furthermore, it is inspected that velocity field dwindles with enlarged variation of Maxwell fluid parameter. It is analyzed that radial velocity of Maxwell nanofluid reduces for larger magnitude of mixed convection parameter. Additionally, temperature profile of species upsurges for larger values of thermal stratification Biot number. Moreover, it is inspected that concentration of species decline for higher estimation of Lewis number while enhanced for activation energy parameter. Microorganisms concentration field of Maxwell nanofluid is detected to be an declining function of Peclet number and bioconvection Lewis number. Angorgeous concurrence is obtained when our accomplished numerical results are compared with an already existed magnitudes in limiting condition; hence dependable results are being eliminated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call