Abstract

This study evaluated physicochemical properties of experimental infiltrants after addition of hydroxyapatite nanoparticles (HAp) or 58S bioactive glass (BAG) and diphenyliodonium hexafluorophosphate (DPI). The resin matrix was composed of TEGDMA/Bis-EMA (3:1), 0.5 mol% CQ, and 1 mol% EDAB. The blends received or not 0.5 mol% DPI and 10% wt BAG or HAp. Icon was used as commercial control. The groups were characterized by XRD, FT-IR spectrometry, and SEM before and after simulated body fluid (SBF) immersion for up to 7 days. Polymerization kinetics (n =3 ), water sorption and solubility (n=10), and viscosity (n = 3) were surveyed. For polymerization kinetics, the samples were polymerized for 5 min and the data were obtained from 40 s and 5 min. Statistical analysis was made using ANOVA and Tukey's test (a = 0.05). After 7 days of SBF immersion, XRD and FT-IR showed that the HAp crystalline phase was present only in the HAp groups. A lower degree of conversion (DC) and polymerization rate were observed for the Icon and BAG groups, whereas HAp showed higher values. For the BAG group, DPI increased polymerization rate and DC in 40 s. After 5 min, all groups presented DC above 80%. In groups with particles, the HAp groups exhibited higher viscosity, whereas DPI groups showed a decrease in viscosity. Icon had the highest water sorption. To conclude, BAG neither improved the physicochemical properties studied, nor did it show bioactive properties. The addition of DPI reduced viscosity caused by particle addition and also attenuated the DC decrease caused by BAG addition. The addition of bioactive particles to infiltrants should be seen with caution because they increase viscosity and may not bring major clinical improvements that justify their use. DPI might be indicated only if any component is added to the infiltrant to act as a compensation mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.