Abstract

The construction and maintenance of asphalt pavements is a resource-consuming sector, where the continuous rehabilitation of the superficial layers demands large volumes of non-renewable resources. The present work focuses on the design and characterization of asphalt mixtures for the binder layer of an asphalt pavement containing 50% reclaimed asphalt (RAP), in which seven different bio-based additives, identified as R1A, R1C, R2A, R2B, R2C, R3A, and R3B, were added to improve the workability, strength, and stiffness properties. The experimental program envisioned the hot mixing of aggregates and RAP with either a 50/70 or a 70/100 bitumen and, in turn, each of the seven bio-additives. The asphalt mixtures underwent the characterization of their densification properties; air voids; indirect tensile strength (ITS); indirect tensile stiffness modulus at 10, 20, 40, and 60 °C; and rutting resistance at 60 °C. The results highlighted that the performance in terms of workability and ITS of the resulting mixtures depends on the type of bio-additive and largely on the fresh bitumen type, while the stiffness at high temperature is not significantly affected by the presence of the bio-additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.