Abstract

AbstractWith the high interest in aerosol deposition in order to form high-quality coatings by solid-state impact, there is an increasing demand for developing general guidelines to estimate needed particle velocities and thus process parameter sets for successful deposition of ceramic materials. By using modeling approaches, rather different material properties in first instance can be expressed in terms of binding energies. Needed velocities for possible bonding can then derived by impact simulations and compared to experimental results from the literature. In order to study the role of binding energy on the impact behavior of ceramic particles in aerosol deposition, a molecular dynamics study is presented. Single-particle impacts are simulated for a range of binding energies, particle sizes and impact velocities. The results show that increasing the binding energy from 0.22 to 0.96 eV results in up to three times higher characteristic velocities corresponding to the threshold of bonding or grain size-dependent fragmentation of the particles. However, regardless of the binding energy, exceeding the characteristic velocities results in a similar deformation and fragmentation pattern. This allows for a general representation of the impact behavior as a function of normalized impact velocity for different ceramic materials. Apart from dealing with prerequisites for bonding of different materials by aerosol deposition, this study could also be generally relevant to the high-velocity deformation behavior of ceramics with different grain sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.