Abstract

To study the influence of beta-amyloid protein (Abeta) and cholesterol on the pathological changes of Alzheimer's disease (AD) and on the expression of nicotinic acetylcholine receptor (nAChR) subunits in the brains of rats. The rats were treated by intracerebroventricular injection of Abeta1-42 and fed with a diet containing 5% cholesterol to establish animal model of AD. The pathological changes, learning and memory, and expression of nAChRs of rats were analyzed by Bieoschowsky staining, immunohistochemistry, water-labyrinth, Western blot, and RT-PCR. Abeta intracerebroventricular injection induced Abeta deposition in rat brains and high-cholesterol diet resulted in hypercholesterolemia in the animals. Injection of Abeta caused a reduction of learning and memory of rats and modifications of the expression of nAChRs. Cholesterol enhanced these effects of Abeta on neuropathology and expression of nAChRs. Abeta can induce marked neuropathological changes, influence the learning and study ability, and modify the expression of nAChRs. Cholesterol can enhance the neurotoxicity of Abeta.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call