Abstract

Nicotinic ligand binding studies have shown rather early that the cholinoceptive system is affected in Alzheimer’s disease (AD). Today, molecular histochemistry enables one to study the nicotinic acetylcholine receptor (nAChR) subunit expression on the cellular level in human autopsy brains, in animal models and in in vitro approaches, thus deciphering the distribution of nAChRs and their role as potential therapeutic targets. The studies on the nAChR expression in the frontal and temporal cortex of AD patients and age-matched controls could demonstrate that both, the numbers of α4- and α7-immunoreactive neurons and the quantitative amount, in particular of the α4 protein, were markedly decreased in AD. Because the number of the corresponding mRNA expressing neurons was unchanged these findings point to a translational/posttranslational rather than a transcriptional event as an underlying cause. This assumption is supported by direct mutation screening of the CHRNA4 gene which showed no functionally important mutations. To get more insight into the underlying mechanisms, two model systems — organotypic culture and primary hippocampal culture — have been established, both allowing to mimic nAChR expression in vitro. In ongoing studies the possible impact of β-amyloid (Aβ) on nAChR expression is tested. Preliminary results obtained from primary cultures point to an impaired nAChR expression following Aβ exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.