Abstract

Basolateral condition of the brain microvascular endothelium is believed to influence blood–brain barrier (BBB) phenotype, although the precise transcriptional and post-translational mechanisms involved are poorly defined. In vivo, the basolateral surface of the blood–brain endothelium is bathed in serum-free interstitial fluid and encompassed by astrocytic end-feet. We hypothesized that these conditions impact on BBB function by directly modulating expression and biochemical properties of tight junctions. To investigate this, an in vitro transwell culture model was employed to selectively modify the basolateral environment of bovine brain microvascular endothelial cells (BBMvECs). In the absence of basolateral (but not apical) serum, we observed higher levels of expression, association and plasma membrane localization for the tight junction proteins, occludin and zonula occludens-1 (ZO-1), in parallel with elevated transendothelial electrical resistance (TEER) and reduced 14[C]-sucrose permeability of BBMvEC monolayers. We further examined the effects of non-contact co-culture with basolateral astrocytes (C6 glioma) on indices of BBMvEC barrier function in both the presence and absence of serum. Astrocyte co-culture with serum led to enhanced occludin protein expression, occludin/ZO-1 association, and ZO-1 membrane localization, in parallel with increased TEER of BBMvEC monolayers. Astrocyte co-culture in the absence of serum (i.e. basolateral conditions most consistent with in vivo BBB physiology) however, gave the highest increases in BBMvEC barrier indices. Thus, we can conclude that factors influencing condition of the basolateral environment of the brain microvasculature can directly, and independently, modify BBB properties by regulating the expression and biochemical properties of the tight junction proteins, occludin and ZO-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.