Abstract
AbstractThe Jurassic to Cretaceous sedimentary rocks of the Surat Basin in southeast Queensland host a significant volume of coal seam gas resources. Consequently, knowledge of the in situ stress is important for coal permeability enhancement and wellbore stability. Using wireline log data and direct stress measurements, we have calculated stress orientations from 36 wells and stress magnitudes from 7 wells across the Surat Basin. Our results reveal a relationship between high tectonic stress and proximity to structures within the underlying “basement” rocks. The influence of tectonic stresses is diminished with depth in areas with thicker sedimentary cover that are relatively far from the basement structures. We suggest that this relationship is due to the redistribution of in situ stresses around areas where basement is shallower and where basement structures, such as the Leichhardt‐Burunga Fault System, are present. This behavior is explained by a lower rigidity in the thickest basin cover, which reduces the ability to maintain higher tectonic stress. Over the entire Surat Basin, a significant amount of variability in in situ stress orientation is observed. The authors attribute this stress variability to complex plate boundary interactions on the northern and eastern margins of the Indo‐Australian Plate.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have