Abstract

The effect of mobile ion background on the dynamics of a planar virtual cathode with retarding field is investigated. The ions appear in the diode gap due to ionization of a neutral gas by the electron beam. Detailed examination of the self-consistent processes of the virtual cathode dynamics, gas ionization, and ions motion is performed using the particle-in-cell simulation. It is shown that the presence of ions leads to the virtual cathode neutralization, its displacement, and subsequent anew formation. The microwave generation has the form of a sequence of pulse packets, whose duration depends on the value of the retarding potential and the kind of gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.