Abstract

Centrifugal pumps often deviate from its design condi-tion during its operation and work at low mass flow conditions. Under such circumstances, unstable flow phenomena may be generated, affecting the efficient and stable operation of pumps. In this paper, a self-circulating casing treatment in U-tube shape is employed on a centrifugal pump to study its effects on the pump’s performance by computational and experi-mental studies. CFD results show that as the flow rate decreases, the back-flow in the inlet pipe of the studied pump without casing treatment increases in intensity and spreads over an growing distance, interfering with the main flow. CFD results also reveal that the casing treatment has a sucking function to the back-flow due to the blade loading of the pump, and when the inlet bleed of the U-tube is placed above (in front of) the leading edge of the blades, the sucking is the strongest, and the control of the back-flow and the improvement to the head coefficient under low mass flow conditions is the best, as the vortex blockage caused by the sucked back-flow in the U-tube is the smallest; when the bleed is under (after) the leading edge of the blades, the effect of the casing treatment is the second best; and when the bleed is across the leading edge of the blades, the blockage in the U-tube is most severe, and the sucking function is the weakest, so there is little improvement to the back-flow and head coefficient. Finally, the relia-bility of this study was demonstrated employing an open pump experimental system with the original pump and the same pump with the casing treatment whose bleed is located above the leading edge of the impeller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.