Abstract

Extracorporeal life support (ECLS) includes life-saving support in severe acute cardiac and/or pulmonary failure. In the past 20 years, centrifugal pumps have become the primary choice to deliver the required blood flow. Pumps of various designs, with different approved operating ranges, are today available to clinicians. The use of centrifugal pumps in the low flow condition has been shown to increase hemolytic and thrombogenic risks of the treatment. Further, low flow operation has been associated with retrograde flow at the pump inlet. In this study, experimental and numerical methods have been applied to investigate the operating conditions and fluid dynamical mechanisms leading to reverse flow (or backflow) at the inlet. Reverse flow was predominantly observed in pumps having a top shroud covering the impeller blades, showing a relation between pump geometry and backflow. The shroud divides the pump volume above the impeller into two regions, separating the swirling reverse flow migrating toward the upper pump volute from the main flow, reducing the dissipation of the vortical structures, and allowing the swirling reverse flow to reach further in the pump inlet. At the inlet, backflow was observed as stable recirculation areas at the side of the pump inlet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call