Abstract
This study investigates the impact of artificially embedded defects on the very high cycle fatigue (VHCF) of 316L stainless steel produced by laser powder bed fusion (PBF-LB) technology. Each specimen contains a single embedded artificial defect of 180 μm or 350 μm in diameter, positioned at specific distances from the surface (ranging from 350 μm to 1200 μm). The defect position and size are quantified by X-ray computed tomography. Following VHCF testing, the fracture surfaces of the specimens are examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with electron diffraction analysis. The results demonstrate that the fracture surfaces predominantly display a fish-eye fracture type, with a fine granular area (FGA) surrounding the internal defects, typical for VHCF. The FGAs dimensions including thickness are estimated by means of microscopy analysis. However, despite the presence of relatively large artificial defects, cracks sometimes initiate from much smaller process-induced defects closer to the surface than the artificial ones. In conclusion, our study quantifies the relationship between the probability of crack initiation from artificial defects and the distance of the artificial defect from the specimen's surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.