Abstract

In this paper, we examine the impact of aqueous-phase ionic strength and ionic composition on viscoelastic properties of the water–crude oil interfacial film by conducting interfacial shear rheological measurements under controlled water chemistry and aging time. A double-wall ring geometry is used in oscillatory mode to measure the film viscoelastic moduli. To further elucidate mechanisms controlling the kinetics of film formation, temperature-dependent interfacial rheological behavior is investigated as a function of time. Our results reveal that low-ionic-strength conditions are more conducive to film formation and, consequently, engender a more viscoelastic interface. This observation is consistent with our previous results on emulsion stability; i.e., increasing the ionic strength of the aqueous phase leads to the formation of less stable emulsions. On the other hand, the temperature dependence of the viscoelasticity buildup demonstrates that adsorption of polar materials onto the interface can be mo...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call