Abstract

Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0–100 mM) or CaCl 2 (0.1–1.0 mM). The experimental breakthrough curves and retention profiles of nHAP were well described using a mathematical model that accounted for two kinetic retention sites. The retention coefficients for both sites increased with the ionic strength (IS) of a particular salt. However, the amount of nHAP retention was more sensitive to increases in the concentration of divalent Ca 2+ than monovalent Na +. The effluent concentration of Cu that was associated with nHAP decreased significantly from 2.62 to 0.17 mg L −1 when NaCl increased from 0 to 100 mM, and from 1.58 to 0.16 mg L −1 when CaCl 2 increased from 0.1 to 1.0 mM. These trends were due to enhanced retention of nHAP with changes in IS and ionic composition (IC) due to compression of the double layer thickness and reduction of the magnitude of the zeta potentials. Results indicate that the IS and IC had a strong influence on the co-transport behavior of contaminants with nHAP nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.