Abstract

ABSTRACT Graphene grown by a coronene (C-graphene) source is transferred to an SiO2 surface, and its Raman spectra are investigated in annealing environments of O2, Ar, and N2. An irreversible doping effect is observed in all the annealing environments, which is attributed to the enhancement of substrate doping. Compared with the mechanically exfoliated graphene on SiO2, stronger remnant stress remains in the transferred C-graphene, and wrinkles prevail on the surface. It is found that the defect density increases only after O2 annealing, and the full width half maximum (FWHM) of the G and 2D bands in the Raman spectrum increases in all the annealing atmospheres. We suggest that the increase of FWHM is caused by the crystalline disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call