Abstract
In this study, the effect of anionic dispersant, poly(acrylic acid-co maleic acid) sodium salt on ceria (CeO2) slurry stability was investigated for quartz chemical mechanical polishing (CMP) applications. The properties of the ceria slurry, including pH, viscosity, and stability behavior as a function of dispersant concentrations (0.1, 1, 3 and 5wt%), were characterized to identify optimized conditions for the polishing process. With the addition of dispersant, the pH of ceria slurry increased to an alkaline regime which is compatible for quartz CMP processing while the viscosity sharply increased at 5wt%. The stability results show that the slurry is stable only at 3wt%, whereas the particles become agglomerated and settle quickly at all other dispersant concentrations. Adsorption and electrokinetic behavior of the ceria slurry were measured to understand the ceria slurry behavior at various dispersant concentrations. At low concentrations, the dispersant does not protect the particles enough to overcome the van der Waals attraction forces, whereas, at higher concentrations, particle agglomeration occurs due to bridging flocculation. At the optimum concentration, the dispersant provides enough steric hindrance to overcome the attractive force. In addition, the presence of sodium ions in the dispersant also strongly influences the settling behavior of ceria particles. The polishing test showed that the desired removal rate and surface quality could be achieved with the optimized slurry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.