Abstract

Results of number projected quasiparticle calculations for Sn isotopes in large and in small model spaces are compared when the force strengths and single-particle energies are determined consistently within each model space. When extending the model space, one observes that the model parameters extracted from the odd nuclei become more satisfactory. For even nuclei the collective states are not lowered in energy although electromagnetic transition rates increase considerably. Spectroscopic factors for one-nucleon transfer reactions change noticeably only for shells close to the Fermi level. Two-nucleon transfer cross-sections are strongly increased for ground state to ground state transitions only. We criticize a usual approximation formula for theL=0 two-nucleon transfer cross-section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.