Abstract

Block copolymers and their related structure-performance relationships for controllable drug delivery have gained much attention recently. In this work, multibranched PEO-PPO copolymer M904 was synthesized, which had the same PEO and PPO segments with commercial 4-branched copolymer Tetronic 904 (T904). The effect of three amino acids alkaline lysine (Lys), neutral glycine (Gly) and acidic glutamic acid (Glu) on the aggregation behavior of M904 and T904 were investigated. The solubilization and in vitro release property of hydrophobic drug simvastatin (ST) were estimated. Compared to T904, lower cloud point, bigger critical aggregation concentration (CAC), smaller micropolarity, larger size aggregates, better drug solubilization capacity and drug released at a slower rate were features of multibranched copolymer M904. With the addition of Lys or Gly, cloud point, micropolarity and CAC decreased, while aggregates size and drug solubility raised, the rate of drug release slowed, and Lys had a greater effect than Gly. Glu showed opposite behavior, CAC and cloud point increased, and release rate became faster. Both the alteration of copolymer architecture and the addition of amino acids could regulate the copolymer performance, which would be beneficial to design drug formulations in pharmaceutical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.