Abstract

Here, we report the influence of the ambient gas on the performance of quantum dot-based light-emitting diodes (QD-LEDs). The blue QD-LED devices with the maximum external quantum efficiency of 8.1% and the turn-on voltage of 2.7 V could be obtained in air. The efficiency decreases by 12% and turn-on voltage increases by 0.3 V relative to the control devices fabricated in a N2-filled glovebox. The histogram of maximum external quantum efficiency (EQE) shows average peak EQE of 8.08% and a low standard deviation of 3.63%, suggesting high reproducibility. Correspondingly, the operational lifetime of 376 h is obtained, which is on par with 408 h of devices fabricated in N2. For the devices fabricated in air, relatively high efficiency could be maintained only at low voltages, because of the near balanced injection of carriers under low bias. The measurements of contact potential difference, chemical composition, and surface roughness are used to verify the variation of energy level and surface morphology of films influenced by different ambient gas. These results would offer reasonable guidance for the application of QD-LEDs in actual large-scale production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.