Abstract

We report high-efficiency blue-violet quantum-dot-based light-emitting diodes (QD-LEDs) by using high quantum yield ZnCdS/ZnS graded core-shell QDs with proper surface ligands. Replacing the oleic acid ligands on the as-synthesized QDs with shorter 1-octanethiol ligands is found to cause a 2-fold increase in the electron mobility within the QD film. Such a ligand exchange also results in an even greater increase in hole injection into the QD layer, thus improving the overall charge balance in the LEDs and yielding a 70% increase in quantum efficiency. Using 1-octanethiol capped QDs, we have obtained a maximum luminance (L) of 7600 cd/m(2) and a maximum external quantum efficiency (ηEQE) of (10.3 ± 0.9)% (with the highest at 12.2%) for QD-LEDs devices with an electroluminescence peak at 443 nm. Similar quantum efficiencies are also obtained for other blue/violet QD-LEDs with peak emission at 455 and 433 nm. To the best of our knowledge, this is the first report of blue QD-LEDs with ηEQE > 10%. Combined with the low turn-on voltage of ∼2.6 V, these blue-violet ZnCdS/ZnS QD-LEDs show great promise for use in next-generation full-color displays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.