Abstract

ABSTRACTThe foremost material that closely mimics the mineral part of the bone tissue, and is therefore suitable for bone replacement, is nano-hydroxyapatite (nHAp) which exhibits low fracture toughness, and can be used for load-bearing scaffolds in biomedical applications. Therefore, for improved biomechanical features, composite materials are developed. This work focuses on the influence and contribution of bioactive alumina and nHAp on the biopolymer, i.e., gelatin matrix for the fabrication of load-bearing bone replacement composites. Incorporation of bioceramics alumina at the strengthening phase is essential for the improvement of mechanical properties for biomedical applications. The porosity of scaffolds varied from 79 to 85%. Fourier transform infrared (FTIR) and X-ray powder diffraction (XRD) analyses showed the presence of molecular interactions and chemical linkages between gelatin matrix, alumina, and nHAp particles. The compressive strength of alumina-reinforced nanocomposites scaffolds is three times higher than those of nHAp/gelatin. The elemental composition of the chemically synthesized nHAp particles was determined by SEM, FTIR, and XRD analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.