Abstract

The objective of this study was to verify the influence of the ACTN3 R577X polymorphism on muscle damage and the inflammatory response after an acute strength training (ST) session. Twenty-seven healthy male individuals (age: 25 ± 4.3 years) participated in the study, including 18 RR/RX and 9 XX individuals. The participants were divided into two groups (RR/RX and XX groups) and subjected to an acute ST session, which consisted of a series of leg press, leg extension machine, and seated leg curl machine. The volunteers were instructed to perform the greatest volume of work until concentric muscle failure. Each volunteer's performance was analyzed as the load and total volume of training, and the blood concentrations of C-C motif chemokine ligand 2 (CCL2), interleukin-8 (IL-8), creatine kinase (CK), lactate dehydrogenase (LDH), myoglobin, testosterone, and cortisol were measured before the ST session and 30 min and 24 h postsession. The ACTN3 R577X polymorphism effect was observed, with increased concentrations of CCL2 (p < 0.01), IL-8 (p < 0.01), and LDH (p < 0.001) in XX individuals. There was an increase in the concentration of CK in the RR/RX group compared to XX at 24 h after training (p > 0.01). The testosterone/cortisol ratio increased more markedly in the XX group (p < 0.001). Regarding performance, the RR/RX group presented higher load and total volume values in the training exercises when compared to the XX group (p < 0.05). However, the XX group presented higher values of delayed onset muscle soreness (DOMS) than the RR/RX group (p < 0.05). The influence of ACTN3 R577X polymorphism on muscle damage and the inflammatory response was observed after an acute ST session, indicating that the RR/RX genotype shows more muscle damage and a catabolic profile due to a better performance in this activity, while the XX genotype shows more DOMS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.