Abstract

This paper examines a series of Al-Cu binary alloy coatings, ranging from 2 to 5 weight percent copper, produced using low-pressure cold spray (CS) deposition with helium as the carrier gas. Binary Al-Cu alloy feedstock powder was produced through inert gas atomization and was sprayed over a variety of temperatures and pressures. Using helium gas, this set of Al-Cu alloys was successfully deposited as high-density coatings. Raising the carrier gas pressure increased the particle velocity and deposition efficiency (DE) in the case of spraying the Al-5 wt.% Cu powders. A clear composite deformation structure was formed in all coatings with clear prior particle centers surrounded by severely deformed regions with ultrafine grains. Microstructural deformation generated by the CS process produced a weak but clear fiber texture for both Al-2 wt.% Cu and Al-5 wt.% Cu coatings. The copper content of the feedstock powder directly influenced the coating hardness and porosity, while having no systematic effect on the DE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.