Abstract

The electronic and nonlinear optical (NLO) properties of BN-substituted graphynes and the corresponding alkali-doped hybrid systems have been determined using density functional theory. When the carbon atoms in the graphyne are replaced by BN pairs, the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap (Egap) increases to some extent, and the static first hyperpolarizabilities (β0) of the novel systems hardly increase. However, when an alkali atom is introduced on the surface of BN-substituted graphyne, the doping effect can effectively modulate the electronic and NLO properties. Doping the alkali atom can significantly narrow the wide Egap of BN-substituted graphynes in the range of 1.03-2.03 eV. Furthermore, the doping effect brings considerable β0 values to these alkali-doped systems, which are 52-3609 au for Li-doped systems and 3258-211 053 au for Na/K-doped ones. The result reveals that the β0 values of alkali-doped complexes are influenced by the atomic number of alkali metals and the proportion of BN pairs. The nature of the excellent NLO responses of alkali-doped complexes can be understood by the low excitation energy of the crucial excited state and the analysis of the first hyperpolarizability density. Besides, these alkali-doped complexes have a deep-ultraviolet working region. Therefore, the combined effect of alkali metal doping and BN substitution can be an excellent strategy to design novel high-performance NLO materials based on graphyne.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call