Abstract
The influence of micrometric alumina (low surface area-to-volume ratio) and nanometric alumina (high surface area-to-volume ratio) on microstructure, hardness and abrasive wear of a NiCrBSi hardfacing alloy coating applied to an AISI 304 substrate using flame spraying (FS) combined with surface flame melting (SFM) is studied. Remelting after spraying improved the mechanical and tribological properties of the coatings. Microstructural characterization using XRD, SEM and EDS indicated that alumina additions produced similar phases (NiSi, Ni3B, CrC and Ni31Si12) regardless of the alumina size, but the phases differed in morphology, size distribution and relative proportions from one coating to another. The addition of 12 wt.% nanometric Al2O3 increased the phases concentration more than five- to sixfold and reduced the hard phases size about four-to threefold compared with NiCrBSi + 12 wt.% micrometric Al2O3. Nanoalumina led to reduced mass loss during abrasive wear compared to micrometric alumina and greater improvement in hardness.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have