Abstract

Spontaneous coal combustion was proved to cause methane accumulation and methane explosions in coal mine goafs. To avoid possible methane explosions, the empirical engineering measure, ventilation dilution, is proposed in coal mines though its disaster prevention mechanism has not been well understood. Through experimental and numerical simulations, the superposition effect of the air leakage and coal combustion-induced chimney effect was studied to reveal disaster prevention effect of ventilation dilution. Research results show that the high temperature area of coal combustion is steady and can provide continuous buoyancy force to form upward airflow even under ventilation dilution; the drifting methane accumulation is observed under the superposition effect of air leakage and upward airflow; ventilation dilution can weaken and even eliminate methane accumulation by overcoming chimney effect, but an increase in coal combustion temperature will enhance the upward airflow of chimney effect to cause methane accumulation again. The competitive relationship between the coal combustion-induced chimney effect and air leakage provides a new insight to study methane migration for the disaster formation and prevention mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.