Abstract

Climate change is expected to have a significant effect on the first flowering date (FFD) in plants flowering in early spring. Prunus yedoensis Matsum is a good model plant for analyzing this effect. In this study, we used a degree day model to analyze the effect of air temperatures on the FFDs of P. yedoensis at Wuhan University from a long-time series from 1951 to 2012. First, the starting date (=7 February) is determined according to the lowest correlation coefficient between the FFD and the daily average accumulated degree days (ADD). Second, the base temperature (=−1.2°C) is determined according to the lowest root mean square error (RMSE) between the observed and predicted FFDs based on the mean of 62-year ADDs. Finally, based on this combination of starting date and base temperature, the daily average ADD of every year was calculated. Performing a linear fit of the daily average ADD to year, we find that there is an increasing trend that indicates climate warming from a biological climatic indicator. In addition, we find that the minimum annual temperature also has a significant effect on the FFD of P. yedoensis using the generalized additive model. This study provides a method for analyzing the climate change on the FFD in plants' flowering in early spring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call