Abstract
In addition to the good electrochemical performance criteria in solid oxide fuel cell (SOFC) applications, cathode material must match thermal expansion with other SOFC components. Thus, effects of Ag on thermal mismatch, chemical reactions, and microstructure are investigated. Ag (1 wt% to 5 wt. %) was mixed with La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) and Sm-doped ceria carbonate (SDCC) composite cathode powder. LSCF6428-SDCC-Ag samples were sintered at 600 °C for 2 h. The thermal expansion coefficients (TECs), which were determined using a dilatometer, indicated relatively less TEC mismatch between LSCF-SDCC-Ag cathodes composite and SDCC electrolyte. The average TEC value obtained from 20 °C to 600 °C implied that LSCF-SDCC-A5 (5 wt. % Ag) showed better thermal matching (13.18×10−6 K−1) with SDCC electrolyte (12.84×10−6 K−1) and achieved better compatibility. The X-ray diffraction patterns indicated that the LSCF6428-SDCC-Ag peak increased with the increase in the amount of Ag. Scanning electron microscopy analysis showed that Ag was capable of maintaining the porosity that is required for cathodes (20%–40%). Results showed that Ag exhibited desirable thermal and chemical compatibility with LSCF-SDCC. Thus, LSCF6428-SDCC-Ag can be used as a composite cathode for low-temperature SOFCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.