Abstract
Ag-doped tin-sulfide thin films were deposited with in spray pyrolysis method at T = 425 °C on soda lime glass substrates. The effects of Ag doping were investigated on the structural, optical, and electrical properties of thin films. Double deionized water was used as a precursor solution in which tin chloride (SnCl45H2O) and thiourea (CS(NH3)2) in addition to silver acetate (AgC2H3O2) were dissolved. All in all resulted to preparation of SnS2:Ag thin films with $$\frac{{\left[ {\text{Ag}} \right]}}{{\left[ {\text{Sn}} \right]}}\% = 0, \,1, \,2, \,3\, {\text{and}} \,4\,{\text{at}}.\%$$ . The (001) plane is the preferred orientation of the SnS2 phase which is analyzed by X-ray diffraction (XRD). The intensity of mentioned peak has an increasing trend, generally, with increasing Ag doping concentration. Thin films have spherical grains as is shown in SEM images. Increasing doping concentration from 1 to 4%, causes decrease in: single-crystal grains from 14.68 to 6.31 nm, optical band gap from 2.75 to 2.62 eV, carrier concentration from 3.11 × 1017 to 2.58 × 1017 cm−3, and Hall mobility from 1.81 to 0.13 cm2/v s, as well as increase in: average grain size, generally, from 70 to 79 nm and electrical resistance from 11.11 to 181.26 Ω cm, respectively. The majority carriers are electrons for these films as is concluded from Hall Effect measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.