Abstract

We describe the results of an X-ray absorption spectroscopy (XAS) study of adsorbate and temperature-dependent alterations of the atomic level structure of a prototypical, noble metal hydrogenation and reforming catalyst: ∼1.0 nm Pt clusters supported on gamma alumina (Pt/γ-Al(2)O(3)). This work demonstrates that the metal-metal (M-M) bonding in these small clusters is responsive to the presence of adsorbates, exhibiting pronounced coverage-dependent strains in the clusters' M-M bonding, with concomitant modifications of their electronic structures. Hydrogen and CO adsorbates demonstrate coverage-dependent bonding that leads to relaxation of the M-M bond strains within the clusters. These influences are partially compensated, and variably mediated, by the temperature-dependent electronic perturbations that arise from cluster-support and adsorbate-support interactions. Taken together, the data reveal a strikingly fluxional system with implications for understanding the energetics of catalysis. We estimate that a 9.1 ± 1.1 kJ/mol strain exists for these clusters under H(2) and that this strain increases to 12.8 ± 1.7 kJ/mol under CO. This change in the energy of the particle is in addition to the different heats of adsorption for each gas (64 ± 3 and 126 ± 2 kJ/mol for H(2) and CO, respectively).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.