Abstract

The microstructures of Al2O3–SiO2–SiC–C refractory matrices with aluminum, silicon, Si3N4, BN, B2O3, and B4C additives are characterized before and after a crucible slag test, and the phases present are compared to those expected at thermodynamic equilibrium. The carbon content dominates the resistance to CaO–MgO–Al2O3–SiO2 slag penetration, while the viscosity of liquid phases present has a significant influence when the matrix carbon contents are similar. Silicon and Si3N4 additives reduce slag penetration resistance because of indirect oxidation of carbon to form SiC. B4C, in particular, and B2O3 also reduce slag penetration resistance because of formation of a more fluid boron‐containing liquid, while aluminum and BN addition have no significant effect. Carbon and BN hardly react with the slag, while SiC partially reacts with it, leading to deposition of carbon as a dense layer. Corundum present in the refractories also readily dissolves in the slag. Microstructurally, slag penetration resistance is associated with the dense carbon layer located at the slag‐refractory interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call