Abstract

AbstractFeSe0.4Te0.6 polycrystal bulks were synthesized using the solid‐state sintering method. We developed a novel multistep sintering process and studied the impact of the sintering cycle number. Different cycles of multistep sintering, ranging from one to four cycles were systematically arranged. It was found that the superconducting properties of the FeSe0.4Te0.6 polycrystal bulk using three cycles of sintering surpassed those of other samples, reaching a maximum of = 13.4 K, = 14.7 K, and a minimum of ∆ = 1.3 K. And the superconducting current density at 4 K reached 1.77 × 104 A/cm2, exhibiting a weak fishtail effect. At 9 K, a composite pinning effect emerged, consisting of normal point pinning and ∆κ surface pinning. The enhancement in superconductivity is attributed to improve uniformity in grain arrangement and more effective element diffusion. After multiple sintering cycles, the stacked grains exhibited increased thickness and the grain arrangement became dense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.