Abstract

The enantioselectivity, E, of Candida antarctica lipase B (CALB) was found to be strongly influenced by the chain length of the achiral acyl donor employed in the transesterification of 3-methyl-2-butanol. Of the four studied acyl donors, the longest, vinyl octanoate, afforded the highest enantioselectivity. This was true over the temperature range studied, 6–70°C. Measurements of the temperature dependence of E allows for separation of the enthalpic and entropic components of enantioselectivity. Changes in E with chain length were mainly caused by changes in the entropic component except for the reaction with vinyl propionate, which differed from the others also in the enthalpic component. Optimisation of acyl donor adds one more possibility to improve the yield of enantiopurity in the production of optically active compounds apart from optimisation of solvent, temperature, water activity, and choice of enzyme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.