Abstract

A standing-wave thermoacoustic engine, employing an acoustic pressure amplifier (APA), is simulated with linear thermoacoustics to study the influence of APA’s dimensions on performance of the thermoacoustic system. Variations of operating parameters, including pressure ratio, acoustic power, hot end temperature of stack etc., versus length and diameter of APA are presented and discussed based on an analysis of pressure and velocity distribution in APA. Simulation results indicate that a largest amplification effect of both pressure ratio and acoustic power output is achieved at a critical length for the occurrence of pressure node and velocity antinode in APA, close to but less than one fourth of the wavelength. The distribution characteristics of pressure and velocity in APA are similar to a standing-wave acoustic field, which is the reason for the amplification effect. From the viewpoint of energy, the amplification effect results from the changed distribution of acoustic energy and acoustic power loss in the thermoacoustic system by APA. Experiments have been carried out to validate the simulation, and experimental data are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.