Abstract

The ionic stability of alumina particles in moderately concentrated ethanol suspensions is studied. Surface chemistry and interparticle forces are manipulated by controlling the acidity of the suspensions without dispersants. The acidity of ethanol solution is determined using ion transfer functions, wherein the relationships between acidity, alumina particle surface charge, zeta‐potential, stability, and suspension rheological behavior are established. Positive isoelectric point (IEP) shift is observed for alumina in ethanol on increasing the solids concentration. However, dilute and concentrated aqueous suspensions of alumina give the same IEP. The viscosity and flow curves for alumina/ethanol suspensions are acidity dependent. The flow curves of the suspensions follow the Casson model, and the Casson yield value is used to evaluate suspension stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call