Abstract

Wood samples of nine tropical hardwoods from Peru and sugar maple wood from Quebec were selected to perform moisture sorption tests associated with parallel-to-grain and tangential compression tests using a multiple step procedure at 25°C. Cold-water and hot-water extractives, sequential cyclohexane (CYC), acetone (ACE) and methanol (MET) extracts, ash content (ASH), wood density and interlocked grain (IG) were evaluated on matched samples too. Wood density corrected for the accessory substances was by far the major factor positively affecting the compressive properties of tropical hardwoods. The total amount of accessory substances is required in order to establish better relationships between physico–mechanical properties and density of tropical hardwoods. For a given wood density, the ultimate stress in parallel-to-grain compression was higher in tropical hardwoods than in temperate hardwoods. However, the compliance coefficients for both types of woods were quite similar. Sequential extraction with organic solvents was the most suitable method for evaluating the effect of extractives on compressive properties of tropical hardwoods. The CYC and ACE fractions did not contribute to variation in these mechanical properties. The substances dissolved in MET affected positively the compliance coefficient s11 in parallel-to-grain compression and negatively the compliance coefficient s33 in tangential compression. The IG decreased the compliance coefficient s11 but also decreased the ultimate stress in parallel-to-grain compression. Finally, variations in compressive properties that were due to changes in equilibrium moisture content (EMC) were clearly influenced by wood density; denser woods were more sensitive to changes in EMC than lighter woods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.