Abstract

Crystalline hydroxyapatite (HA) thin films grown on metallic substrates is the best choice for bone restoration. This is due to the good biological compatibility of the hydroxyapatite material combined with the good mechanical characteristics of the substrates. We deposit HA thin films by Pulsed Laser Deposition (PLD) in vacuum at room temperature using a KrF* excimer laser ((lambda) equals 248 nm, (tau) <SUB>FWHM</SUB> &gt;= 20 ns). The depositions were performed directly on Ti-5Al-2.5Fe or on substrates previously coated with a TiN buffer layer. The HA deposited structures were characterized by complementary techniques: GIXRD, SEM, TEM, SAED, EDS and nanoindentation. Properties of the HA films grown with and without the TiN buffer were discussed in term of microstructure and mechanical behavior. The films with interlayer preserve the stoichiometry, are completely recrystallized and present better mechanical characteristics as compared with those without buffer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call