Abstract

In this work, laser induced tungsten plasma has been investigated in the absence and presence of 0.6 T static transverse magnetic field at atmospheric pressure in air. The spectroscopic characterization of laser induced tungsten plasma was experimentally studied using space-resolved emission spectroscopy. The atomic emission lines of tungsten showed a significant enhancement in the presence of a magnetic field, while the ionic emission lines of tungsten presented little change. Temporal variation of the optical emission lines of tungsten indicated that the atomic emission time in the presence of a magnetic field was longer than that in the absence of a magnetic field, while no significant changes occurred for the ionic emission time. The spatial resolution of optical emission lines of tungsten demonstrated that the spatial distribution of atoms and ions were separated. The influence of a magnetic field on the spatial distribution of atoms was remarkable, whereas the spatial distribution of ions was little influenced by the magnetic field. The different behaviors between ions and atoms with and without magnetic field in air were related to the various atomic processes especially the electrons and ions recombination process during the plasma expansion and cooling process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call