Abstract

ABSTRACT Continuous wave near-IR spectroscopy (CW-NIRS) has been increasingly applied for the noninvasive, in vivo measurement of tissue and blood chemistry. It is hypothesized that there is a quantifiable relationship between fat thickness and near infrared diffuse reflectance spectra at all wavelengths, and this relationship can be used to remove the spectral influence of the overlying fat layer from the muscle spectrum. The hypothesis was investigated at a single wavelength using Monte Carlo simulations of a two-layer structure and with phantom experiments. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. It is also shown that the optical properties of the muscle and fat layers influence this relationship under certain conditions. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm, such as on the forearm. If NIRS measurement is to be performed on an anatomical region with a thicker fat layer, a spectral correction for fat will be needed to account for its thickness and the variation in optical coefficients for both the fat and the muscle layers. Keywords: NIR spectroscopy, diffuse reflectance, fat influence, muscle, two-layer, Monte Carlo simulation, tissue phantoms

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call