Abstract

In order to measure muscle physiological parameters such as pH and oxygen partial pressure (PO2) by continuous wave (CW) diffuse reflectance near-infrared spectroscopy (NIRS), light must penetrate through skin and subcutaneous fat layers overlying muscle. In this study, the effect of skin and subcutaneous fat layer and on the spatial sensitivity profile of CW diffuse reflectance near-infrared spectra is investigated through Monte Carlo simulations. The simulation model uses a semi-infinite medium consisting of skin, fat and muscle. The optical properties of each layer are taken from the reported optical data at 750 nm. The skin color is either Caucasian or Negroid and the fat thickness is varied from 0 ~ 20 mm. The spatial sensitivity profile, penetration depth, and sensitivity ratio as functions of optical fiber source-detector separation (SD, 2.5 mm, 5.0 mm, 10.0 mm, 20.0 mm, 30.0 mm and 40.0 mm), skin color and fat thicknesses are predicted by the simulations. It is shown that skin color only slightly influenced the spatial sensitivity profile, while the presence of the fat layer greatly decreased the detector sensitivity. It is also shown that probes with longer SD separations can detect light from deeper inside the medium. The simulation results are used to design a fiber optic probe which ensures that enough light is propagated inside the muscle in NIRS measurement on a leg with a fat layer of normal thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.