Abstract

Continuous solidification experiments were carried out with immiscible alloys under the effect of a direct current. The experimental results demonstrate that a direct current shows a significant effect on the migration of minority phase droplets (MPDs) in continuously solidified immiscible alloys. It can promote the formation of a well dispersed microstructure or a core/shell microstructure. A model describing the kinetics of the microstructure evolution in a continuously solidified immiscible alloy was developed. The microstructure formation in the alloys was calculated. The numerical results are in favorable agreement with the experimental ones. They demonstrate that a direct current may affect the microstructure development through changing the spatial motions of MPDs. The alloys show a well dispersed microstructure when they are solidified with such a direct current density that the direct current causing motion of the MPDs is almost equivalent to the radial component of the Marangoni migration velocity of the MPDs. The alloys show a core/shell microstructure when they are solidified with such a direct current density that the direct current causing motion of the MPDs dominates the migration of the MPDs along the radial direction of the sample. A wire or rod with well dispersed microstructure or a core/shell microstructure can be prepared by solidifying immiscible alloys under the effect of a direct current properly chosen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call