Abstract

While microgravity exposure is known to cause deterioration of skeletal muscle performance, little is known regarding its effect on tendon structure and function. Hence, the aims of this study were to investigate the effects of simulated microgravity on the mechanical properties of human tendon and to assess the effectiveness of resistive countermeasures in preventing any detrimental effects. Eighteen men (aged 25-45 yr) underwent 90 days of bed rest: nine performed resistive exercise during this period (BREx group), and nine underwent bed rest only (BR group). Calf-raise and leg-press exercises were performed every third day using a gravity-independent flywheel device. Isometric plantar flexion contractions were performed by using a custom-built dynamometer, and ultrasound imaging was used to determine the tensile deformation of the gastrocnemius tendon during contraction. In the BR group, tendon stiffness estimated from the gradient of the tendon force-deformation relation decreased by 58% (preintervention: 124 +/- 67 N/mm; postintervention: 52 +/- 28 N/mm; P < 0.01), and the tendon Young's modulus decreased by 57% postintervention (P < 0.01). In the BREx group, tendon stiffness decreased by 37% (preintervention: 136 +/- 66 N/mm; postintervention: 86 +/- 47 N/mm; P < 0.01), and the tendon Young's modulus decreased by 38% postintervention (P < 0.01). The relative decline in tendon stiffness and Young's modulus was significantly (P < 0.01) greater in the BR group compared with the BREx group. Unloading decreased gastrocnemius tendon stiffness due to a change in tendon material properties, and, although the exercise countermeasures did attenuate these effects, they did not completely prevent them. It is suggested that the total loading volume was not sufficient to completely prevent alterations in tendon mechanical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.