Abstract

Alterations of hydrology are known to trigger changes in coastal ecosystems, such as the composition and abundances of local flora and fauna. It is less well known how these alterations lead to changes in nutrient and energy transfers in these systems. We used comparisons of stable isotope signatures (δ13C, δ15N, and δ34S) in the tissues of conspecific plants and animals collected on each side of the Mobile Bay Causeway to determine the extent to which the causeway may have altered energy and nutrient exchange between the Mobile–Tensaw Delta and upper Mobile Bay. While the δ13C signatures of most plants and animals varied irrespective of their location relative with causeway location, their δ15N and δ34S signatures were almost always more enriched south of the causeway, indicating significant alterations of trophic linkages within this estuarine food web. Dual isotope plots and mixing model analyses indicated that while terrestrial and floating plants were trophically important to consumers north of the causeway, submerged aquatic vegetation was more important to consumers south of the causeway. Although limited in spatial and temporal scale, our results preliminarily show that there are noteworthy differences in stable isotope signatures most likely due to the Mobile Bay Causeway altering energy and nutrient transference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.