Abstract

Fatty acid biomarkers and stable isotope signatures were used to identify the trophic dynamics of a mangrove/seagrass estuarine food web at Matapouri, northern New Zealand. Specific fatty acids were used to identify the preferred food sources (i.e., mangroves, seagrass, phytoplankton, macroalgae, bacteria, and zooplankton) of dominant fauna (i.e., filter feeders, grazing snails, scavenger/predatory snails, shrimp, crabs, and fish), and their presence in water and sediment samples throughout the estuary. The diets of filter feeders were found to be dominated by dinoflagellates, whereas grazers showed a higher diatom contribution. Bacteria associated with organic debris on surface sediments and brown algal ( Hormosira banksii) material in the form of suspended organic matter also accounted for a high proportion of most animal diets. Animals within higher trophic levels had diverse fatty acid profiles, revealing their varied feeding strategies and carbon sources. The stable isotope (δ 13C and δ 15N) analyses of major primary producers and consumers/predators revealed a trend of 15N enrichment with increasing trophic level, while δ 13C values provided a generally good description of carbon flow through the food web. Overall results from both fatty acid profiles and stable isotopes indicate that a variety of carbon sources with a range of trophic pathways typify this food web. Moreover, none of the animals studied was dependent on a single food source. This study is the first to use a comprehensive fatty acid biomarker and stable isotope approach to investigate the food web dynamics within a New Zealand temperate mangrove/seagrass estuary. This quantitative research may contribute to the currently developing management strategies for estuaries in northern New Zealand, especially for those perceived to have expanding mangrove fringes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call