Abstract
AbstractObservational data covering currents and temperature through two contrasting autumn to spring periods (2010/2011 and 2013/2014) at the constricted entrance to the inner basin of the Hornsund fjord, Svalbard, are investigated. This fjord is presently undergoing significant changes, manifested by reduction of the seasonal sea ice cover and retreating tidewater glacier fronts. The data set presented here shows how local wind, tides, and longer period current fluctuations allow warm water of Atlantic origin to reach the innermost basin of the fjord. While the forcing factors of the exchange mechanisms are not seen to vary much between the two studied seasons, the effect of wind events on exchange is assumed to be modified by local stratification and sea ice concentration. The resulting heat transport depends on availability of heat in the central part of the fjord. The observations indicate that available heat in autumn and winter 2013/2014 effectively hindered formation of a stable sea ice cover. While the present data set does not enable direct quantification of the role of oceanic heat in tidewater glacier melting, we find that the net retreat of glacier fronts was 10 times larger in the warm (ocean) period 2013/2014 compared to the colder 2010/2011.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.