Abstract

We extend a classically scale invariant model where the electroweak symmetry breaking is triggered by the dynamical chiral symmetry breaking in a hidden QCD sector, and a real singlet scalar [Formula: see text] mediates these two sectors. Our model can explain cosmic inflation without unitarity violation in addition. Slow-roll inflation occurs along a valley in scalar potential. In the original model, the coupling [Formula: see text] between the Higgs field [Formula: see text] and [Formula: see text] is always negative and therefore, the potential has its valleys in [Formula: see text]-[Formula: see text] mixed directions. For large value of the top Yukawa coupling [Formula: see text], the potential along the valley becomes negative since the Higgs quartic coupling [Formula: see text] becomes negative at inflationary scale. Then slow-roll inflation cannot occur. For inflation to definitely occur, we render the coupling [Formula: see text] positive at inflationary scale and consider the [Formula: see text]-inflation case. This is achieved by introducing a new singlet scalar [Formula: see text] with the large coupling [Formula: see text] to [Formula: see text]. By this extension, [Formula: see text] can also always be positive, and we consider this case as the simplest case. We consider inflation with the nonminimal coupling [Formula: see text] between [Formula: see text] and gravity. Although [Formula: see text] is large such as [Formula: see text], unitarity is not violated since couplings between [Formula: see text] and other fields are sufficiently small. [Formula: see text] is odd under a new symmetry [Formula: see text] not to mix with [Formula: see text] regardless of largeness of [Formula: see text]. Because of this symmetry, [Formula: see text] may have its relic abundance [Formula: see text] comparable with the observational value [Formula: see text] of the dark matter relic abundance. However, the spin-independent elastic cross-section [Formula: see text] of [Formula: see text] exceeds the observational bound [Formula: see text] cm2. Hence, we impose the resonance condition [Formula: see text] and reduce [Formula: see text] to much smaller than [Formula: see text]. Constraints from the electroweak scale physics and inflationary scale physics are much strong, and the allowed parameter space is very narrow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call