Abstract

The 750 GeV resonance observed by ATLAS and CMS may be explained by a gauge singlet scalar. This would provide an ideal candidate for a gauge singlet scalar alternative to Higgs Inflation, S-inflation. Here we discuss the relevant results of S-inflation in the context of the 750 GeV resonance. In particular, we show that a singlet scalar, if it is real, has a major advantage over the Higgs boson with regard to unitarity violation during inflation. This is because it is possible to restrict the large non-minimal coupling required for inflation, $\xi \sim 10^5$, to the real singlet scalar, with all other scalars having $\xi \sim 1$. In this case the scale of unitarity violation $\Lambda$ is much larger than the inflaton field during inflation. This protects the inflaton effective potential from modification by the new physics or strong coupling which is necessary to restore unitarity, which would otherwise invalidate the perturbative effective potential based on Standard Model physics. This is in contrast to the case of Higgs Inflation or models based on complex singlet scalars, where the unitarity violation scale during inflation is less than or of the order of the inflaton field. Therefore if the 750 GeV resonance is the inflaton, it must be a non-minimally coupled real singlet scalar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call